

Semester : IX I Subject : 060				Integrated M.Sc. Math)090901 Higher Tra	Academic V	Year : 2019-20		
Teaching Schedule Course Objectives: To understand the fundamentals concept of transcendental function and its application.								
Course CO1: ar CO2: ur CO3: ba CO4: ex CO5: de	outcon nalyze th nderstan asic theo xplain th emonstr	nes: Upon he propert nd propert ory of ortho ne applicati rate their u	completion of the course, students sl ies of hypergeometric functions. ies of generating function. ogonal polynomials. ions and the usefulness of special fun nderstanding of how physical pheno	hall be able to actions: mena are modeled using	special function:			
Unit	Sub Unit	No. of Lect.(s)	Topics	Reference Chapter/ Additional Reading	Teaching Methodology to be used	Active Learning Activities	Evaluation Parameter	
Unit 1	: Hyper	rgeometri	c Functions					
[17]	1.1 1.2 1.3 1.4	2 3 3 3	Hypergeometric equationHypergeometric functionIntegral representationDifferentiation of Hypergeometric function	CH#2 Special Functions	Chalk & Talk	For Slow Learner:Students must write some theoremsgiven by teacher after completion ofunitFor Active Learner:Student will find the applicationrelated to theorems after completionof Unit.	Assignment-1	
[15]	1.5	4	Confluent Hyper geometric function and its integral representation	Andrews, G.E., R. Askey and R. Roy				
Unit 2: Theory of Generating Functions								
[15]	2.1	4	Generating functions of the form G(2xt-t2), et \emptyset (t), A(t)exp[-xt/(1-t)](1-t)- q \otimes [4xt/(1-t)]	CH#8 Special Functions E.D.Rainville	Chalk & Talk	For Slow Learner: Students must write some theorems given by teacher after completion of unit	Unit Test -1 & Assignment-2	

Mr. Nikhil Choksi

Semester : IX			J	Integrated M.Sc. Math	Academic Year : 2019-20		
Subject : 060090901 Higher Transcendental Functions							
	2.2	4	Boas and Buck Type			For Active Learner:	
	2.3	3	Pure recurrence relations			Student will find the application	
	2.4	4	Appell, Sheffer and 0-type characterizations of polynomial sets			related to theorems after completion of Unit.	
Unit 3	8: Ortho	gonal Poly	ynomials				
	3.1	1	Introduction			For Slow Learner: Students must write some theorems given by teacher after completion of unit For Active Learner: Student will find the application related to theorems after completion of Unit.	Unit Test -2 Assignment-3
[15]	3.2	3	The moment functional and orthogonality				
	3.3	2	Existence of OPS	СН#5			
	3.4	3	The fundamental recurrence formula	Special Functions	Chalk & Talk		
	3.5	3	Zeros, Gauss quadrature, Kernel polynomials	Askey and R. Roy			
	3.6	3	Symmetric moment functional, certain related recurrence relations				
Unit 4	l: Basic	Hypergeo	metric Series & their Applications				
	4.1	3	Introduction to Basic Hyper geometric series			For Slow Learner: Students must write some theorems	
[15]	4.2	6	q-analogue of orthogonal polynomials	CH#10 Special Functions	Chally & Tally	given by teacher after completion of unit	Internal Examination Assignment-4
	4.3	4.3 6	q-Gamma and q-Beta functions	Andrews, G.E., R. Askey and R. Roy		For Active Learner: Student will find the application related to theorems after completion of Unit.	

Semester : IX

Integrated M.Sc. Mathematics Subject : 060090901 Higher Transcendental Functions Academic Year : 2019-20

Text books:

1. Andrews, G.E., R. Askey and R. Roy, "Special Functions", Cambridge Univ. Press, 1990.

Reference books:

- 1. Bailey W.N., "Generalized Hyper geometric series" Stechert-Hafner Service Agency, New York and London, 1964.
- 2. Copson E.T., "introduction to the theory of functions of a complex variable", The English Language Book Society, London, 1978.
- 3. Chihara, T.S., "Introduction to orthogonal polynomials", Gordon and Breach Science Publishers Inc., New York, 1978.
- 4. Saxena R.K., Mathai A.M., Hans J. Haubold, "The H-functions, Theory and Applications", Springer, 2010.

Course Objectives and Course Outcomes Mapping:

• To understand the fundamentals concept of transcendental function and its application - CO1, CO2, CO3, CO4, CO5.

Course Units and Course Outcomes Mapping:

Unit No.	Unit	Course Outcomes					
		C01	CO2	CO3	CO4	CO5	
1	Hypergeometric Functions	\checkmark					
2	Theory of Generating Functions		√				
3	Orthogonal Polynomials			✓			
4	Basic Hypergeometric Series & their Applications	\checkmark			~	\checkmark	

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

Semester : IX

Integrated M.Sc. Mathematics Subject : 060090901 Higher Transcendental Functions

Academic Year : 2019-20

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Programme Outcomes and Course Outcomes Mapping:

Programme Outcomes	Course Outcomes					
	C01	CO2	CO3	CO4	CO5	
P01	✓	✓				
PO2		✓	\checkmark	✓		
PO3			\checkmark	✓	✓	
PO4				✓	✓	

